This estimation is best possible, as shown by the square |
|
Proof | Define n:= c01+c02+c03+c06+c07+c08+c11+c12+c13, s:= c04+c05+c09+c10+c14+c15, f:= c19+c20+c24+c25. |
|
|
Proof
From Theorem 1 (using the calculator of Remark 1) we get: hence since Corollary 2 "X"-sum and "x"-sum: |
|
|
|
|
|
| |||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||||
D = |
-215c012-111c022-71c032-68c042-87c062-71c072-39c082-68c092-87c112-47c122-95c132-36c142-80c162 +c01(-258c02-190c03-172c04-210c06-134c07-30c08+124c09-210c11-98c12+70c13-12c14-200c16) +c02(-138c03-132c04-126c06-90c07-18c08+84c09-126c11-78c12+66c13-12c14-120c16) +c03(-100c04-90c06-62c07-30c08+52c09-50c12+22c13-12c14-90c11-80c16) +c04(-84c06-44c07-12c08+40c09-84c11-44c12+52c13-24c14-80c16) +c06(-90c07-42c08+36c09-126c11-54c12+42c13-12c14-120c16) +c07(-54c08-4c09-66c11-58c12-34c13-12c14-40c16) +c08(-36c09-18c11-18c12-42c13-12c14) +c09(60c11+20c12-76c13-24c14+80c16) +c11(-78c12+18c13-36c14-120c16) +c12(-22c13-36c14-40c16) +c13(-36c14+80c16) +22750c01+15210c02+11830c03+10660c04+13650c06+10790c07 +5070c08-2860c09+13650c11+8450c12+650c13+3900c14+10400c16 -791375. |
Remark 2 The next two squares show, that the entries c01,c02,c03,c04,c06,c07,c08,c09,c11,c12,c13,c14, and c16 do not completely determine the magic square, but by Theorem 6 there are at most 2 squares having these entries in common, because there are not more than 2 possible values for c19. These values may be determined with the following "calculator" (JavaScript required, "NaN" means: "not a number"). |
|
|